79 research outputs found

    A meta-analysis of structural MRI studies of the brain in systemic lupus erythematosus (SLE)

    Get PDF
    A comprehensive search of published literature in brain volumetry was conducted in three autoimmune diseases — systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and ulcerative colitis (UC) — with the intention of performing a meta-analysis of published data. Due to the lack of data in RA and UC, the reported meta-analysis was limited to SLE. The MEDLINE database was searched for studies from 1988 to March 2022. A total of 175 papers met the initial inclusion criteria, and 16 were included in a random-effects meta-analysis. The reduction in the number of papers included in the final analysis is primarily due to the lack of overlap in measured and reported brain regions. A significantly lower volume was seen in patients with SLE in the hippocampus, corpus callosum, and total gray matter volume measurements as compared to age- and sex-matched controls. There were not enough studies to perform a meta-analysis for RA and UC; instead, we include a summary of published volumetric studies. The meta-analyses revealed structural brain abnormalities in patients with SLE, suggesting that lower global brain volumes are associated with disease status. This volumetric difference was seen in both the hippocampus and corpus callosum and total gray matter volume measurements. These results indicate both gray and white matter involvements in SLE and suggest there may be both localized and global reductions in brain volume

    Beyond Patient Reported Pain: Perfusion Magnetic Resonance Imaging Demonstrates Reproducible Cerebral Representation of Ongoing Post-Surgical Pain

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Multivariate decoding of brain images using ordinal regression.

    Get PDF
    Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection

    The autonomic brain: multi-dimensional generative hierarchical modelling of the autonomic connectome

    Get PDF
    The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods — and data scales — hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system — a multidimensional, generative network — that renders its richness tractable within future models of its function in health and disease

    The autonomic brain: Multi-dimensional generative hierarchical modelling of the autonomic connectome.

    Get PDF
    The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods-and data scales-hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system-a multidimensional, generative network-that renders its richness tractable within future models of its function in health and disease

    Delineation between different components of chronic pain using dimension reduction - an ASL fMRI study in hand osteoarthritis

    Get PDF
    DK was supported by grants from GENIEUR COST action and the ‘Sint Annadal’ Foundation Maastricht. MAH and SW are supported by a Medical Research Council Experimental Medicine Challenge Grant award (MR/ N026969/1) and the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Trust. The data collected for this study were part of an academic–industrial collaboration between King’s College London and the study sponsor, Pfizer Global Research and Development, UK. All data collection was performed by King’s College London scientists only

    Voxel-based magnetic resonance imaging investigation of poor and preserved clinical insight in people with schizophrenia

    Get PDF
    AIM To define regional grey-matter abnormalities in schizophrenia patients with poor insight (Insight-), relative to patients with preserved clinical insight (Insight+), and healthy controls. METHODS Forty stable schizophrenia outpatients (20 Insight- and 20 Insight+) and 20 healthy controls underwent whole brain magnetic resonance imaging (MRI). Insight in all patients was assessed using the Birchwood Insight Scale (BIS; a self-report measure). The two patient groups were pre-selected to match on most clinical and demographic parameters but, by design, they had markedly distinct BIS scores. Voxel-based morphometry employed in SPM8 was used to examine group differences in grey matter volumes across the whole brain. RESULTS The three participant groups were comparable in age [F(2,57) = 0.34, P = 0.71] and the patient groups did not differ in age at illness onset [t(38) = 0.87, P = 0.39]. Insight- and Insight+ patient groups also did not differ in symptoms on the Positive and Negative Syndromes scale (PANSS): Positive symptoms [t(38) = 0.58, P = 0.57], negative symptoms [t(38) = 0.61, P = 0.55], general psychopathology [t(38) = 1.30, P = 0.20] and total PANSS scores [t(38) = 0.21, P = 0.84]. The two patient groups, as expected, varied significantly in the level of BIS-assessed insight [t(38) = 12.11, P 0.20) from each other. CONCLUSION Our findings demonstrate a clear association between poor clinical insight and smaller fronto-temporal, occipital and cerebellar grey matter volumes in stable long-term schizophrenia patients

    Preliminary report: parasympathetic tone links to functional brain networks during the anticipation and experience of visceral pain

    Get PDF
    Medical Research Council project grant - Medical Research Council Grant Number - MGAB1A1
    corecore